Selasa, 01 Maret 2011

Unsur Kimia

Tabel periodik unsur kimia
Unsur kimia, atau hanya disebut unsur, adalah zat kimia yang tak dapat dibagi lagi menjadi zat yang lebih kecil, atau tak dapat diubah menjadi zat kimia lain dengan menggunakan metode kimia biasa. Partikel terkecil dari unsur adalah atom. Sebuah atom terdiri atas inti atom (nukleus) dan dikelilingi oleh elektron. Inti atom terdiri atas sejumlah proton dan neutron. Hingga saat ini diketahui terdapat kurang lebih 117 unsur di dunia.




Gambaran umum

Hal yang membedakan unsur satu dengan lainnya adalah "jumlah proton" dan jumah elektron suatu unsur atau ikatan dalam inti atom tersebut. Misalnya, seluruh atom karbon memiliki proton sebanyak 6 buah, sedangkan atom oksigen memiliki proton sebanyak 8 buah. Jumlah proton pada sebuah atom dikenal dengan istilah nomor atom (dilambangkan dengan Z).
Namun demikian, atom-atom pada unsur yang sama tersebut dapat memiliki jumlah netron yang berbeda; hal ini dikenal dengan sebutan isotopMassa atom sebuah unsur (dilambangkan dengan "A") adalah massa rata-rata atom suatu unsur pada alam. Karena massa elektron sangatlah kecil, dan massa neutron hampir sama dengan massa proton, maka massa atom biasanya dinyatakan dengan jumlah proton dan neutron pada inti atom, pada isotop yang memiliki kelimpahan terbanyak di alam. Ukuran massa atom adalah satuan massa atom (smu). Beberapa isotop bersifat radioaktif, dan mengalami penguraian (peluruhan) terhadap radiasi partikel alfa atau beta.
Unsur paling ringan adalah hidrogen dan helium. Hidrogen dipercaya sebagai unsur yang ada pertama kali di jagad raya setelah terjadinya Big Bang. Seluruh unsur-unsur berat secara alami terbentuk (baik secara alami ataupun buatan) melalui berbagai metode nukleosintesis. Hingga tahun 2005, dikenal 118 unsur yang diketahui, 93 unsur diantaranya terdapat di alam, dan 23 unsur merupakan unsur buatan. Unsur buatan pertama kali diduga adalah teknetium pada tahun 1937. Seluruh unsur buatan merupakan radioaktif dengan waktu paruh yang pendek, sehingga atom-atom tersebut yang terbentuk secara alami sepertinya telah terurai.
Daftar unsur dapat dinyatakan berdasarkan namasimbol, atau nomor atom. Dalam tabel periodik, disajikan pula pengelompokan unsur-unsur yang memiliki sifat-sifat kimia yang sama.

[sunting]Tata nama

Penamaan unsur telah jauh sebelum adanya teori atom suatu zat, meski pada waktu itu belum diketahui mana yang merupakan unsur, dan mana yang merupakan senyawa. Ketika teori atom berkembang, nama-nama unsur yang telah digunakan pada masa lampau tetap dipakai. Misalnya, unsur "cuprum" dalam Bahasa Inggris dikenal dengan copper, dan dalam Bahasa Indonesia dikenal dengan istilah tembaga. Contoh lain, dalam Bahasa Jerman "Wasserstoff" berarti "hidrogen", dan "Sauerstoff" berarti "oksigen".
Nama resmi dari unsur kimia ditentukan oleh organisasi IUPAC. Menurut IUPAC, nama unsur tidak diawali dengan huruf kapital, kecuali berada di awal kalimat. Dalam paruh akhir abad ke-20, banyak laboratorium mampu menciptakan unsur baru yang memiliki tingkat peluruhan cukup tinggi untuk dijual atau disimpan. Nama-nama unsur baru ini ditetapkan pula oleh IUPAC, dan umumnya mengadopsi nama yang dipilih oleh penemu unsur tersebut. Hal ini dapat menimbulkan kontroversi grup riset mana yang asli menemukan unsur tersebut, dan penundaan penamaan unsur dalam waktu yang lama (lihat kontroversi penamaan unsur).

[sunting]Lambang kimia

Sebelum kimia menjadi bidang ilmu, ahli alkemi telah menentukan simbol-simbol baik untuk logam maupun senyawa umum lainnya. Mereka menggunakan singkatan dalam diagram atau prosedur; dan tanpa konsep mengenai suatu atom bergabung untuk membentuk molekul. Dengan perkembangan teori zat, John Dalton memperkenalkan simbol-simbol yang lebih sederhana, didasarkan oleh lingkaran, yang digunakan untuk menggambarkan molekul.
Sistem yang saat ini digunakan diperkenalkan oleh Berzelius. Dalam sistem tipografi tersebut, simbol kimia yang digunakan adalah singkatan dari nama Latin (karena waktu itu Bahasa Latin merupakan bahasa sains); misalnya Fe adalah simbol untuk unsur ferrum (besi), Cu adalah simbol untuk unsur Cuprum (tembaga), Hg adalah simbol untuk unsur hydrargyrum (raksa), dan sebagainya.
Simbol kimia digunakan secara internasional, meski nama-nama unsur diterjemahkan antarbahasa. Huruf pertama simbol kimia ditulis dalam huruf kapital, sedangkan huruf selanjutnya (jika ada) ditulis dalam huruf kecil.

[sunting]Simbol non-unsur

Non unsur, khususnya dalam kimia organik dan organometalik, seringkali menggunakan simbol yang terinspirasi oleh simbol-simbol unsur kimia. Berikut adalah contohnya:
Cy - sikloheksil; Ph - fenil; Bz - benzoil; Bn - benzil; Cp - Siklopentadiena; Pr - propil; Me - metil; Et - etil; Tf - triflat; Ts - tosil; Hb - hemoglobin.

[sunting]Kelimpahan

UnsurPpm (w/w)
Hidrogen739,000
Helium240,000
Oksigen10,400
Karbon4,600
Neon1,340
Besi1,090
Nitrogen960
Silikon650
Magnesium580
Sulfur440
Kalium210
Nikel100


wikipedia.org

Massa Atom


Untuk nilai perbandingan rata-rata massa seluruh isotop suatu atom terhadap 1/12 massa atom karbon-12, silakan lihat bobot atom
Massa atom (ma) dari suatu unsur kimia adalah massa suatu atom pada keadaan diam, umumnya dinyatakan dalam satuan massa atom.[1] Massa atom sering disinonimkan dengan massa atom relatifmassa atom rata-rata, dan bobot atom. Walaupun demikian, terdapat sedikit perbedaan karena nilai-nilai tersebut dapat berupa rata-rata berbobot dari massa semua isotop unsur, atau massa dari satu isotop saja. Untuk kasus suatu unsur yang hanya memiliki satu isotop dominan, nilai massa atom isotop yang paling melimpah tersebut dapat hampir sama dengan dengan nilai bobot atom unsur tersebut. Untuk unsur-unsur yang isotop umumnya lebih dari satu, perbedaan nilai massa atom dengan bobot atomnya dapat mencapai lebih dari setengah satuan massa (contohnya klorin). Massa atom suatu isotop yang langka dapat berbeda dari bobot atom standar sebesar beberapa satuan massa.
Atom litium-7 memiliki 3 proton, 4 neutron, dan 3 elektron. Atom ini bermassa 7,016 u. Litium-6 yang langka dan bermassa 6,015 u hanya memiliki 3 neutron, membuat bobot atom (massa atom relatif) litium menjadi 6,941 u.

[sunting]Massa atom relatif

Massa atom relatif (Ar) adalah massa atom rata-rata relatif terhadap 1/12 dari massa atom karbon-12, dengan perata-rataan berdasarkan kelimpahan isotop. Ia bersinonim dengan bobot atom.[2] Sedangkan massa isotop relatif (Ar) adalah massa relatif suatu isotop yang diperbandingkan dengan karbon-12.












wikipedia.org

Reaksi Nuklir


Dalam fisika nuklir, sebuah reaksi nuklir adalah sebuah proses di mana dua nuklei atau partikel nuklir bertubrukan, untuk memproduksi hasil yang berbeda dari produk awal. Pada prinsipnya sebuah reaksi dapat melibatkan lebih dari dua partikel yang bertubrukan, tetapi kejadian tersebut sangat jarang. Bila partikel-partikel tersebut bertabrakan dan berpisah tanpa berubah (kecuali mungkin dalam level energi), proses ini disebut tabrakan dan bukan sebuah reaksi.
Dikenal dua reaksi nuklir, yaitu reaksi fusi nuklir dan reaksi fisi nuklir. Reaksi fusi nuklir adalah reaksi peleburan dua atau lebih inti atom menjadi atom baru dan menghasilkan energi, juga dikenal sebagai reaksi yang bersih. Reaksi fisi nuklir adalah reaksi pembelahan inti atom akibat tubrukan inti atom lainnya, dan menghasilkan energi dan atom baru yang bermassa lebih kecil, serta radiasi elektromagnetik. Reaksi fusi juga menghasilkan radiasi sinar alfa, beta dan gamma yang sagat berbahaya bagi manusia.
Contoh reaksi fusi nuklir adalah reaksi yang terjadi di hampir semua inti bintang di alam semesta. Senjata bom hidrogen juga memanfaatkan prinsip reaksi fusi tak terkendali. Contoh reaksi fisi adalah ledakan senjata nuklir dan pembangkit listrik tenaga nuklir.
Unsur yang sering digunakan dalam reaksi fisi nuklir adalah Plutonium dan Uranium (terutama Plutonium-239, Uranium-235), sedangkan dalam reaksi fusi nuklir adalah Lithium dan Hidrogen (terutama Lithium-6, Deuterium, Tritium).


Representasi

Persamaan reaksi nuklir ditulis serupa seperti persamaan dalam reaksi kimia. Setiap isotop ditulis dalam bentuk: simbol kimianya dan nomor massa. Partikel neutron dan elektron, masing-masing ditulis dalam simbol n dan e. Partikel proton atau protium(sebagai inti atom hidrogen) ditulis dalam simbol p. Partikel deuterium dan tritium, masing-masing ditulis dalam simbol D dan T.
Contohnya:
Lithium-6 + Deuterium -> Helium-4 + Helium-4
   
       6Li   +   D       ->    4He   +   4He
   
       6Li   +   D       ->  2 4He

isotop helium-4, disebut juga partikel alfa, bisa ditulis dalam simbol α
Jadi, bisa juga ditulis:
6Li   +   D       ->     α    +    α
   
atau:
6Li(D,α)α     (bentuk yang dipadatkan)

[sunting]Energi

Untuk menghitung energi yang dihasilkan, perubahan massa isotop sebelum dan sesudah reaksi nuklir diperhitungkan. Jumlah massa yang hilang, dikalikan dengan kuadrat kecepatan cahaya; hasilnya sama dengan energi yang dilepaskan dalam reaksi itu.

(lihat Tabel isotop)
   
   
   massa isotop Lithium-6 : 6,015122795
   massa isotop Deuterium : 2,0141017778
   massa isotop Helium-4  : 4,00260325415
   
    Lithium-6  +   Deuterium  ->   Helium-4     +    Helium-4
   6,015122795 + 2,0141017778 -> 4,00260325415  +  4,00260325415
                   
          8,0292245728        ->          8,0052065083
           
 Massa yang hilang: 8,0292245728 - 8,0052065083 = 0,0240180645 u   (0,3%)
         
                                                                   (dibulatkan)
                
               
         E = mc2
             
               
         E = mc2  =       1u             x      c2
                  = 1,660538782×10−27 kg x (299.792.458 m/s)2
                  = 149241782981582746,248171448×10−27 Kg m2/s2
                  = 149241782981582746,248171448×10−27 J
                  = 931494003,23310656815183435498209 ev
                  = 931,49 Mev       (dibulatkan)
   Jadi, massa 1u = 931,49 Mev
         
         
         
         E = mc2  =       1 Kg           x      c2
                  =       1 kg           x (299.792.458 m/s)2
                  = 89875517873681764 Kg m2/s2
                  = 89875517873681764 J
                  = 89,875 PJ       (dibulatkan)
 Jadi, massa 1 Kg = 89,875 PJ
         
         
         
 Jadi energi yang dapat dihasilkan = 89,875 PJ/kg  =  21,48 Mt TNT/kg
                                   =149,3   pJ/u   = 931,49 MeV/u
                    
                      
         E = 0,0240180645 u    x   931,49 MeV
               
         E = 22,372586901105 MeV  (dengan keakuratan 1%)
         E = 22,4 Mev            (dibulatkan)
   
    
 Jadi, persamaan reaksinya: 
            
     6Li + D ->   4He (11.2 MeV)   +   4He (11.2 MeV)
     
     6Li + D -> 2 4He  +  22,4 MeV
     
     
 massanya hilang sebanyak 0,3 % (dibulatkan dari 0,2991330517938 %)
   
                           0,3 %  x  21,48 Mt TNT/kg  =  64 Kt/kg  (dibulatkan)
 
 
 jadi, Jumlah energi yang bisa dihasilkan (dengan 100 % efisien )
 melalui reaksi fusi nuklir berbahan materi:
      
     Lithium-6 + Deuterium  =  64 Kt/kg  (dibulatkan)

[sunting]Rata-rata kandungan energi nuklir

Berikut adalah jumlah energi nuklir yang bisa dihasilkan per kg materi:
Fisi nuklir:
Uranium-233: 17,8 Kt/kg  =  17800 Ton TNT/kg
   Uranium-235: 17,6 Kt/kg  =  17600 Ton TNT/kg
 Plutonium-239: 17,3 Kt/kg  =  17300 Ton TNT/kg
Fusi nuklir:
Deuterium + Deuterium: 82,2 Kt/kg  =  82200 Ton TNT/kg
 Tritium   + Deuterium: 80,4 Kt/kg  =  80400 Ton TNT/kg
 Lithium-6 + Deuterium: 64,0 Kt/kg  =  64000 Ton TNT/kg

wikipedia.org

Rumus Einstein yang Paling Terkenal adalah E=mc²

Berkas:Relativity3 Walk of Ideas Berlin.JPG

Walk of Ideas Berlin



E = mc2 dalam ilmu fisika adalah sebuah rumus yang sering dikenal dan sangat penting dalam menjelaskan persamaan nilai antara energi (E) dan massa (m), yang disetarakan secara langsung melalui konstanta kuadrat laju cahaya dalam vakum ( c 2 )
 E = mc^2 \!,
yang mana:
Faktor c 2 bernilai 89.88 PJ/kg = 21.48 Mt TNT per kg = 149.3 pJ/u = 931.5 MeV/u.
Jika energi yang dimaksud dalam persamaan di atas adalah energi diam, maka massa yang terkait adalah juga massa diam atau massa invarian.

Sejarah dan konsekuensinya

Albert Einstein menurunkan formula ini didasarkan atas pengamatannya pada tahun 1905 atas kelakuan obyek yang bergerak dengan laju mendekati laju cahaya. Kesimpulan terkenal yang ditariknya dari pengamatan ini adalah bahwa massa sebuah benda sebenarnya adalah sebuah ukuran darikandungan energi benda tersebut. Sebaliknya, persamaan yang dimaksud mengisyaratkan bahwa semua energi yang ada dalam sistem tertutup mempengaruhi massa diam dari sistem.
\mathrm{Energi} = \mathrm{Massa}\,\times\,(\mathrm{laju\ cahaya\ dalam\ vakum})^2
Menurut persamaan ini, jumlah maksimum energi yang "dapat diperoleh" dari suatu obyek untuk melakukan kerja aktif adalah massa obyek dikalikan kuadrat dari laju cahaya.
Rumus ini juga digunakan untuk mengukur besarnya energi yang dihasilkan dalam reaksi nuklir. Perubahan massa isotop sebelum dan sesudah reaksi nuklir diperhitungkan. Dimana jumlah massa yang hilang sesudah reaksi nuklir (Δm) dikalikan dengan kuadrat kecepatan cahaya, hasilnya sama dengan energi yang dilepaskan dalam reaksi nuklir tersebut.
n^1_0 + X_N^A \rightarrow Y_N^B + Energi(\Delta m) \!






wikipedia.org

Twitter Delicious Facebook Digg Stumbleupon Favorites More